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NON-STEADY WAVES IN AN ACOUSTIC HED~UH 
WITH BOUNDARrES SHAPED LIKE A PARABOLIC CYLINDER* 

A.G. GORSHKOV, YU.V. RACHINSKII and D.V. TARLAKOVSKII 

A method is proposed for solving certain two-dimensional 
non-steady-state problems for an acoustic medium outside a parabolic 
cylinder. In all cases the problem reduces to solving a Volterra 
integral equation of the second kind. 

The short-wave asymptotic behaviour of a diffraction field in an 
acoustic medium was studied in /I., 2/. An analytical solution for the 
diffraction of non-steady waves was derived in 13, 4/ only for 
two-dimensional waves with a front perpendicular to the plane of 
symmetry of the cylinder. 

1. Statement of the problem and the method of sobing it. We introduce non-dimensional 
variables 

Throughout, all primed variables are dimensional; X’, Y’ are Cartesian coordinates, A is 
a characteristic linear dimension, c is the velocity of propagation of longitudinal waves, 
p is the density of the medium, p' is the pressure, and tp' is the velocity potential of 
reflected waves. 

The medium will be considered in a parabolic system of coordinates E,q, so that the 
curve q ==qO defines a parabola, and then 

x = (5" - rjZ)lZ, Y = Eq, E = qov2 

where E is the focal length. As a result we obtain the following problem for the potential: 

azgap + a2gaq = (52 + 712) azqiatz (1.1) 

‘p llzo = acpiat ItcO = 0, lim,_.,cp = 0 

(w + wad,=,, = Q (5, 1) 

where x is a parameter: x =0 for diffraction by an absolutely rigid surface, and x = co 
for diffraction by an absolutely soft surface. The function Q characterizes the inhomogeneity 
of the boundary condition; in diffraction problems it has the following form (ipt, denotes the 
potential of the incident wave): 

Q (5, t) = -(XCF~ + a~ola~)q=q. (1.2) 

Evaluating the Laplace transform of the solution with respect to the time variable and 
separating the space variables in the wave Eq.(l.l), we obtain 

aw,vap + (c, - ~25~) kL = 0 
aqwq - (c, + 5212) @‘nL = 0 

where the index L indicates transforms, s is the transform parameter and .c, the separation 
constants. 

Eqs.(1.3) have single-valued solutions /5/ for the following values of c,,: 

c, = (2n + l)s, n = 0, *I, _&Z, . . . (1.4) 

It has been shown, relying on the asymptotic behaviour of the Weber functions /6/, that 
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the solution of (1.3) for diverging waves must have the form 

(1.5) 

Here D,(z) are Weber functions (of a parabolic cylinder). We recall that Weber func- 
tions of non-negative integer orders form a complete orthogonal system in L,(--00, + m): 

*a, 
1 D, (2) D,(z) dz = n! 1/-% 6,. (4, (1 .f2 -m 

and have the following representation /7/z 

(1.7) 

A,, = (n + y,, - I)!! (-I)‘&,! 12~+~n.” I(2 (k + y,) - I)!! (a, -k)l k!lP 
h, = [n/21, yn = n - 21, 

In view of the difficulties involved in inverting expressions whose denominators contain 
the functions D_,_,(q,,T/%) and their derivatives, we shall not look for the transforms of 

the solutions in explicit form. Using (1.4) and the zero initial data, we will use (1.3) to 
obtain hyperbolic equations for the inverse transforms of BnL, a),L: 

azB,tap + (2n + I) aB,iat - pav,iat2 = 0 (1.8) 

aw,/aq2 - (zn + I) aqiat - q2aw,,iat2 = 0 

We will first consider the solutions of the first equation in (1.8). Transforming to 
characteristic variables I = t - EV2, y = t + j2/2, we obtain equations of the Euler-Darboux 

type. Using the substitution 

B, = (y - s)"-Yn"2d'~z, (X, y)/&& 

we can show that the solution bounded at t-0 is 

(1.9) 

Here b, is an arbitrary function that vanishes for positive values of the argument, 
From (1.7) and (1.9) we can conclude that the Laplace transform of B,(& t) is 

B,,L (5, s) = h,‘, (s) D, (gJ&) s-‘,” (1.10) 

This result is in complete agreement with the formula for the transform of the general 
solution (1.5). 

To solve the second equation in (1.8) we assume that the boundary values of the unknown 
function are known: 

mfi (no, t) = 6 (t), a@, (no, t)ian = qn (t) (1.11) 

Transforming in the equation for a,, (1.8) to characteristic variables z = t - nV2, y = 
t + n2/2, we again obtain equations of the Euler-Darboux type, for which we can write down 
the Riemann function I%/: 

(1.12) 

where F (a, f3, y, u) is the hypergeometric function. Using the latter's properties /7/, we can 
represent the Riemann function (1.12) as follows (p%b) are the Jacobi polynomials): 

u = (z - SdY - Y,)lI(Y - %)(5 - Yd 
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(1.13) v,?n (5% Y* %I Yo) = 
(u - d’* (u - m 4 

@, -*y/i 
p? -‘I*) (1 - 24 

Vem+l @., y, Io’ y,) = (I/ - 4 (uo - d’% - d pt$ ‘I-) (1 _ 24 

(go - .)y+“. 

In accordance with Riemann's method /a/, the solution of the second equation of (1.8) in 
the region t > 6, li > %I satisfying the zero initial conditions may be written as follows 
(Fig.1): 

@,(z,t)=+[(~y a, (t - z + zo) - t-\+z’(d* (z) A, (t, z, z, zo) + (1.14) 

qn (T) B, (t, z, z, zo)) dr] 1 &;tT ‘CT z9 zo) = 

(22,)~‘11 v, (z - z,,, z + zo, t - z,, t + z), A, (t, 7, z, zo) = 

- (2zJ’* fw,/az,, z = $/2, z. -= qo2/2 

Putting z = zo in (1.141, we obtain an integral equation for the boundary values: 

t 
d*(t)+S[a,(t--)d,(z)+B,(t--7)Qn(Z)1d~=0 

a, (t) 1 A,,(& 0, zo, z,,), Bn (t) = & (6 0, zo, zo) 

(1.15) 

Later we shall need explicit expressions for the integral kernels in (1.15) for even n, 
which may be obtained from (1.13)-(1.15): 

(1.16) 

aZm (t) = + + 1, t - 112 
2 (ta - q+l) 

q fj 
0 am 

(t) - 

‘loa (lp - t)m-1 
(qg + t)m+“. 

x 

(1, ‘I,) mtVJm + 1) pm, (9 
ta 

h = _ Ilo 

Fig.1 

It now remains to pick the functions d,,,g,, in such a way that 'p 
condition (1.1). Using (1.61, 

satisfies the boundary 
we expand the transform of 

tions: 
Q (5, t) in a series of Weber func- 

Q L 6 4 = 2 QnL(4 0, (5 l/s,, (1.17) 
hll 

By the convolution theorem, Eq.Cl.151 may be written as follows in the transform space: 

&r (s) (1 + c&r (s)) + 4nr (a) BnL (s) = 9 (1.18) 

The transforms of the boundary values of the unknown function are, by (1.3), (1.10), 
(l.ll), 

Formulae 
transforms of 

(l.l), 
U,,, G;': 

(l-17)-(1.19) now yield the following system of equations for the 

U,LW(l + a,L (s)) + GnL(s)BnL(s) = 0, ~U,~(s)i G,L (s) = 0 (1.20) 
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If x+=00 in fl.1) then, eliminating GIL, we obtain a Volterra equation of the 
second kind fox Cint: 

An expression fox Q-(t) is obtained from (1.17) by inverting the order of the inverse 
Laplace transformation and integrating with respect to It), which is possible provided the 
integral with respect to S is uniformly convergent in some right half-plane. The inverse 
transform of sZL(w, s) may be written explicitly in various specific cases. 

If x=00 the functions U,(t) are known and (1.20) yields an equation for G,(t): 

Once W, and G,, have been determined from (1.21) or (1.22), the transform of the paten- 
tial at an arbitrary point may be determined from [1.3), (1.10), (1.14) and (1.19): 

Howevex f the properties of the series (1.19) f (1.23) are not such as to guarantee the 
legitimacy of term-by-term inversion, since in most cases they are not uniformly convergent 
with respect to s in the right half-plane. Indeed, each term in these series yields a delay 
factor J$(t - EZi2) (where H is the Heaviside unit function), whereas the sum of the series 
has no such factor. Exceptions to this rule occur in the diffraction of a two-dimensional 
wave with front perpendicular to the axis of the parabola and also for the point g-0 
corresponding to the apex of the parabola. In the latter case it follows from (1.71, (1.19) 
that 

To find the boundary values of the potential at E +O, we first consider the case of a 
problem exhibiting symmetry with respect to the axial plane of the parabolic cylinder. Then 
the only terms retained in the series of (X.19) are those witheven indices. We will confine 
our attentian to values of $,>0. Since the functions Dlk [p'24 form a complete orthagonal 

system in the space of functions integrable with weight ~'1s ovex the interval 

is possible, by expanding the functions D,,,,(wJfz) in terms of this system, to represent the 

right-hand side of (1.19) as a series in Dzt (s”’ f/g) : 

where Gmwm are the coefficients of the expansion of iI,,(wl/2) in terms of the system 

D,x cWwt. Their values may be found from 11+7) and formulae in /9/: 



223 

On the basis of the formulae of operational calculus /lo/ and formulae (1.251, we 
obtain a representation of the potential on the boundary of the cylinder: 

where L-i is the inverse Laplace transform operator. When g ==0 formula (1.27) reduces 
to (1.24). 

Proceeding in the same way for the series (1.231, we can find the value of the potential 
at an arbitrary point of the external medium. 

If the potential is not an even function of 5, one must consider the following complete 
system of orthogonal functions, which are integrable with weight f WI-'" over the interval 
(--=% +a)): 

r2k (w) = &I, (f2 1 X2 1) (1.28) 

rkk+l (w) = 
&k (y’G)x w>o 

- Dkk (1/- 2~4, w < 0 

It is then possible to expand (1.191 anew in terms of the functions (1.281, proceeding 
in the same way as before. 

2. &xmlpzes. We will now examine a series of specific problems concerning the dif- 
fraction of waves by the absolutely rigid surface of a parabolic cylinder and some other non- 
steady-state problems. 

Diffraction of a step-shaped pressure wave with front perpendicular to the plane of 
symmetry of the cylinder. In this case the boundary condition (1.1) has the form 

ag, (k, no, t)l* = n,H @ - f;d& (2.1) 
QL ff, ~1 = M'o (e mk 

The only term retained in expansion (1.17) is the term with n=O. From (1.16) and (1.21) 
we obtain the equation 

(2.2) 

It now follows from (1.19) that the pressure at the surface of the cylinder depends only 
on the delay t- SV2, and using (2.2) one can show that Uo depends on t/e. From (2.2) one 
obtains an equation for the total pressure on the surface of the cylinder e=l: 

Eq.(2.3) is identical with that obtained in /2, 3/ by transforming to space-time variables. 

Diffmction of a cy’linder wave by the absolutely rigid surface of a parabolic cylinder. 
Let us assume that the source of the wave is at a point M(--a,6), where a > 8, b>O (Fig. 
2) and the potential of the incident wave has the Laplace transform 

where K, is the modified Bessel function of second order, h' is the distance from the source 
to the point under consideration and WL characterizes the wave profile beyond the front. We 
shall assume that 

WC (e) = v'z (a - e)/n& @.5> 

COrreSpOnding t0 a preSSUre Jump Of R+ 
any point of the space. 

at the front, with the wave subsequently damped at 
Using the Duhamel integral one can also deal with any other variations 
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of the pressure with time. 

Fig.2 Fig.3 

Substituting (2.3) into (1.2), (1.171, the problem reduces to inverting a MacDonald 
function with argument (A#-+- bb”+ Ag I- Al)‘i*, A, = As(w), which is rather difficult to do by 
elementary methods if b+ 0. Consider a point N on the axis of symmetry of the parabola, 
equidistant from the apex and the source, and an arbitrary point P. 

Using the addition theorem for cylindrical functions /lo/, we express the incident wave 
potential as a series 

(2.6) 

where I* is the modified Bessel function of first order and a and 8 the angles between the 
segments PN, MN and the X axis. 

For the sequel we shall need the following trigonometric relations: 

Here C,t and Bnh. axe constants (see /lo/). 
Substitution of (2.6) into formula (2.5) and differentiation of the latter with respect 

to n leads to the following form of the boundary condition (l.l), (1.2): 

(2.8) 

By (L.2), (1.21), and (2.7), the derivation of the integral equation requires finding 
the inverse transform of the function 

&(m,s)=Ik JJ E,,,z*(sT)e-~r &+" 
Sll-l)/kf;k+f ’ 

(2.9) 

n, ii, f 

{I&-, m enT -t- nc-‘& Kl eeT1 x-r -i- Rn tu esT x 

t k 
-t-_---m. :-.-Ey.q, x*=ST-&W4/2 
2FJ x+ * 

5 = T [(s + yuP)~ - &D*] 'I* 
EI/C c-l-e , a=F' Y=ZT" 

The factors in (2.8) must be regrouped in such a way that the inversion is readily 
carried out for each of them separately, using known formulae from /IO/. 

The radiation of a mve by a _zmwboZic cylinder moving forwurd at a given vetoeity. 
Suppose that the velocity of the cylinder in a Cartesian system of coordinates has components 
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v, (4 H (% VY (0 fl w. Then the boundary condition (1.1) is 

where 6 is the angle between the normal vector to the cylinder n=~ and the X axis. 
Under these conditions, we deduce from (l.l), (1.17), (2.9) and the formulae of the 

operational calculus /lo/ that 

8 (ut, 1) = Fl (Ln, t) * ['/*roV* (t) * (at)-"' - fiVX (#)I (2.41) 

P, (~0, t) = 6 (t) + 3rd" (i6e)" e~p (-St,) [I, (3&f + 1, (3t,)l 
t* = tit (ilk)-1 

After solving the integral Eqs.(1.21) using (2.11), the pressure at the surface of the 
cylinder can be evaluated using (1.24) and (1.27). 

Expansion of a ~rabo~ic cavity due to sudden application of pressure. Asume that the 
pressure is constant along the boundary of the parabolic cylinder, equal to p (t) H (t). Then 
it follows from (1.1) and (1.17) (see /%f) that 

Eq.(1.22) gives G,,(t). The velocity of the leading point of the parabola E=O is 
determined from (1.19): 

Gsn (t) (2m -I)!! (-iy 

The diffraction of a cyZindrica2 wave, from a source in the pZane of syllpnetry of a 
parabolic cyt-kder, by an absolutely r&id surface. Suppose that the incident wave is de- 
scribed by Eqs.(2.4) and (2.5). The solution can be obtained by using formulae (2.6)-(2.91, 
after putting b=O. But the algebrawillbe far simpler if (2.4) is substituted directly into 
(1.2) and (1.17), and the result is 

(2.12) 

Since both functions are even with respect to 5, Eq.(1.21) must be considered for only 
n=2m. One can then derive from (2.12) and the formulae in /lO/ an explicit expression for 
the functions that determine the right-hand side of the integral'Eq.(1.21). 

(2.13) 

G (t, w) = exp(--ylu+[(t f I'# + 2tT1)+ ch v - (1 I_ 2y,T,)(2u,T,)" sh v, 

v = $4 (P + 2tTJ”” 

Based on the form of Eqs.fl.21) and (2.13), one can show that iJ,,,, depends only on the 
quotients t/e and ale. It is therefore sufficient to solve the problem for a= f. 

The Volterra Eq.(1.21) has been solved by means of Simpson's and the trapezoidal quadra- 
ture formulae. The time interval 10,tml was divided into N e equal intervals and the values 
of the function were found at each point successively. It was assumed during the calculations 
that tm= 3 and N0=50, and six terms were retained in each of the series (1.24), (1.27). 

The solid curves in Fig.3 plot the total pressure at the apex of the parabola S=l 
for different positions of the source. The calculations were carried out using (1.24). The 
values of the pressure evaluated using five and six terms of the series differed by at most 
O.l#, indicating rapid convergence of the series. When a>9 the pressure values differ from 
the pressure in a two-dimensional wave by at most 3%. Curves 1-4 correspond to the following 
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positions of the source: a= 1.5,&S, and 9. As follows from physical considerations, at the 
initial instant of time the pressure at the leading point is doubled. 

The dashed curves l-3 in Fig.3 represent the pressure distribution over the surface of 
the parabolic cylinder at times t = 0.6, 1.2, and 3. The source of the cylindrical wave is in 
the plane of symmetry and a= 2. The calculations were carried out using four terms of the 
expansion (1.27). 
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INHOMOGENEOUS ELASTIC STRUCTURES OPTIMAL IN STIFFNESS* 

L.V. PETUKHOV and K.E. SOKOV 

The problem of maximizing the stiffness (of minimizing the work of the 
external forces) of an elastic structure in which the shear modulus is 
the control or, in the two-dimensional case, the plate thickness /l-3/ is 
considered. Point-by-point and integral constraints are imposed on the 
control. Necessary Weierstrass-Erdmann conditions and Weierstrass 
conditions are obtained that enable qualitative deductions to be made 
about the optimal solution. These deductions do not agree with the 
results in /4/ in which, it is true, a problem of mathematical physics is 
examined. 

1. Forsmctation of the pobtem. Let RN be an N-dimensional Euclidean space of vectors 
x = zteei, where ei are the unit vectors of a Cartesian system of coordinates (here and 
everywhere henceforth the Latin subscripts i, i, k, 1, m, n run through values from 1 to N and 
summation from 1 to N is assumed over the repeated subscripts i,j,k, l,m,n in the products), 
8 is the projection domain in RN, and p is the boundary of 51. 

We will assume that the domain & can be filled by an elastic inhomogeneous material 
_~~ 
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